首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   117篇
  免费   1篇
化学   49篇
晶体学   2篇
力学   3篇
数学   24篇
物理学   40篇
  2022年   1篇
  2018年   2篇
  2016年   3篇
  2015年   2篇
  2014年   2篇
  2013年   38篇
  2010年   2篇
  2008年   2篇
  2007年   1篇
  2005年   2篇
  2004年   3篇
  2002年   2篇
  2000年   4篇
  1999年   2篇
  1996年   9篇
  1995年   1篇
  1994年   2篇
  1993年   2篇
  1992年   2篇
  1991年   2篇
  1990年   1篇
  1989年   3篇
  1988年   1篇
  1987年   1篇
  1986年   4篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1981年   1篇
  1976年   1篇
  1973年   1篇
  1972年   2篇
  1971年   6篇
  1970年   1篇
  1969年   1篇
  1968年   2篇
  1967年   1篇
  1961年   1篇
  1951年   1篇
  1931年   2篇
  1928年   1篇
排序方式: 共有118条查询结果,搜索用时 359 毫秒
51.
Mössbauer spectroscopy has been used to investigate the nature of the Zinc-Iron alloys present within the Hot Dip Galvanized (HDG) layers of steel with a silicon content of 0.35 %. The investigation also studied the impact of the powder coating pretreatment on the nature of the alloy layers. The acid etching process within the pretreatment process in particular would be expected to have a significant impact on the HDG layer. This study utilized 57Fe Mössbauer spectroscopy to examine identically processed samples prior to and post pre treatment. XRD and 57Fe CEMS measurements were performed on hot galvanized S355J2 + N samples, forming sandwiched structure. Both XRD and CEMS reveal the presence of dominant steel phase in accordance with its estimated occurrence on the surface of the sandwiched samples. Minor Γ-Fe3Zn10, ζ-FeZn15 and solid solution Fe-Zn as well as minor Fe-Si phases could also be identified.  相似文献   
52.
We present the penalized fast subset scan (PFSS), a new and general framework for scalable and accurate pattern detection. PFSS enables exact and efficient identification of the most anomalous subsets of the data, as measured by a likelihood ratio scan statistic. However, PFSS also allows incorporation of prior information about each data element’s probability of inclusion, which was not previously possible within the subset scan framework. PFSS builds on two main results: first, we prove that a large class of likelihood ratio statistics satisfy a property that allows additional, element-specific penalty terms to be included while maintaining efficient computation. Second, we prove that the penalized statistic can be maximized exactly by evaluating only O(N) subsets. As a concrete example of the PFSS framework, we incorporate “soft” constraints on spatial proximity into the spatial event detection task, enabling more accurate detection of irregularly shaped spatial clusters of varying sparsity. To do so, we develop a distance-based penalty function that rewards spatial compactness and penalizes spatially dispersed clusters. This approach was evaluated on the task of detecting simulated anthrax bio-attacks, using real-world Emergency Department data from a major U.S. city. PFSS demonstrated increased detection power and spatial accuracy as compared to competing methods while maintaining efficient computation.  相似文献   
53.
Abstract

A technique is developed which addresses the problem of irradiation assisted stress corrosion cracking of stainless steels in light water reactors using high energy protons to induce grain boundary segregation. These results represent the first grain boundary segregation measurements in bulk produced by proton irradiation of stainless steel. The technique allows the study of grain boundary composition with negligible sample activation, short irradiation time, rapid sample turnaround and at minimal cost. Scanning Auger electron microscopy is used to obtain grain boundary composition measurements of irradiated and unirradiated samples of ultra high purity (UHP) type 304L stainless steel and UHP type 304L steels with the additions of phosphorus (UHP + P) and sulphur (UHP + S). Results show that irradiation of all three alloys causes significant Ni segregation to the grain boundary and Cr and Fe away from it. Irradiation of the UHP + P alloy also results in segregation of P at the grain boundary from 5.3 to 8.7 at %, over 80 times the bulk value. No radiation-induced grain boundary segregation of S was measured in the UHP + S alloy. Results also indicate that the presence of P or S may enhance radiation-induced segregation of major alloying elements at the boundary. Comparison of irradiated and unirradiated regions of the UHP + P alloy indicate that while a prior thermal treatment segregates P to the grain boundary to 5.3 at %, the major element concentrations at the grain boundary are completely different from those under irradiation.  相似文献   
54.
The chemisorption of CO on a Cr (110) surface is investigated using the quantum Monte Carlo method in the diffusion Monte Carlo (DMC) variant and a model Cr2CO cluster. The present results are consistent with the earlier ab initio HF study with this model that showed the tilted/near-parallel orientation as energetically favoured over the perpendicular arrangement. The DMC energy difference between the two orientations is larger (1.9 eV) than that computed in the previous study. The distribution and reorganization of electrons during CO adsorption on the model surface are analysed using the topological electron localization function method that yields electron populations, charge transfer and clear insight on the chemical bonding that occurs with CO adsorption and dissociation on the model surface.  相似文献   
55.
In this study, the aromatic-thiol π hydrogen bonding and phenylalanine-cysteine side chain interactions are characterized through both molecular orbital calculations on a C6H6-HSCH3 model complex and database analyses of 609 X-ray protein structures. The aromatic-thiol π hydrogen bonding interaction can achieve a stabilization energy of 2.60 kcal mol?1, and is stronger than the already documented aromatic-hydroxyl and aromatic-amino hydrogen bonds. However, the occurrence of the aromatic-thiol hydrogen bond is rather rare in proteins. This is because most of the thiol groups participate in the formation of either disulphide bonds or stronger S—H…O (or N) ‘normal’ hydrogen bonds in a protein environment. Interactions between the side chains of phenylalanine and cysteine residues are characterized as the phenyl(Phe)(HSCH2-)(Cys) interaction. The bonding energy for such interactions is approximately 3.71 kcal mol-1 and is achieved in a geometric arrangement with an optimal phenyl(Phe)-(HS-)(Cys) π-type hydrogen bonding interaction. The interaction is very sensitive to the orientation of the two lone electron pairs on the sulphur atom relative to the π electron cloud of the phenyl ring. Accordingly, the interaction configurations that can accomplish a significant bonding energy exist only within a narrow configurational space. The database analysis of 609 experimental X-ray protein structures demonstrates that only 268 of the 1620 cysteine residues involve such phenylalanine-cysteine side chain interactions. Most of these interactions occur in the form of π (aromatic)-lone pair(sulphur) attractions, and correspond to a bonding energy less than 1.5 kcal mol?1. A few were identified as the aromatic-thiol hydrogen bond with a bonding energy of 2.0–3.6 kcal mol?1.  相似文献   
56.
This paper presents a method of obtaining the complete asymptoticsolution of boundary value problems of the form for x [0,1] where b(x) is strictly positive andfor small and positive. Physically, the problem arises in determiningthe steady-state concentration of a substance in a chemicalflow reactor. A "two-variable" expansion procedure is used.  相似文献   
57.
The effects of implantation-induced radiation damage on the thermal oxidation of cobalt have been studied. Bombardment by both Co+ self-ions and by Xe+ has been studied as a function of ion dose, energy and annealing temperature. A major increase in oxidation was observed for doses of >1016 Co+ cm–2 in agreement with previous studies on Al. The oxidation behaviour as a function of annealing temperature was markedly different for Co+ and Xe+ bombarded samples. For Co+ bombarded samples, damage anneals rapidly in the temperature range 20–300°C due to thermally assisted repair of point defects and vacancy clusters. However, for Xe+ bombardment, it is proposed that the higher annealing temperatures required for damage repair arise due to the stabilisation of three-dimensional vacancy clusters by the oversized Xe atoms. The increase in oxidation after annealing in the temperature range 300–500°C is thought to be due to vacancy release mechanisms which may affect oxide nucleation.  相似文献   
58.
59.
Abstract— The effects of u.v.-irradiation at 254 nm upon lyophilized ribonuclease, lysozyme, insulin, and chymotrypsinogen have been investigated by electron spin resonance (ESR). enzymatic assay, and labeling of free radical sites with tritiated hydrogen sulfide (HST). The ESR signal of the irradiated protein diminishes on exposure to HST, and tritium becomes covalently bound to carbon. The distribution of tritium among the amino acids of each protein. studied as an indicator of the carbon free radical distribution, differs markedly from those observed previously to result from exposure to gamma radiation, electrical discharge. or hydrogen atoms. However, the earlier observation that the tritium distribution is influenced by protein conformation holds true as well for u.v.-irradiation. Moreover, the distributions of tritium among the amino acids of u.v.-irradiated proteins indicate a broad scattering of free radicals. Tyrosine and phenylalanine, residues that absorb light energy in the region of the wavelength employed, are not particularly important as radical carriers. Thus, for ribonuclease, these residues incorporated 3.8 and 1.5 per cent of the total tritium, but they absorb 51 and 12 per cent of the light, respectively. These results, together with the observed low recoveries of methionine, an amino acid that does not absorb at 254 nm, add weight to the concept that a migration of energy ensues after the initial absorption of light energy and that photolytic damage may thus be due to destruction of amino acids other than those initially absorbing the u.v.-radiation.  相似文献   
60.
Does GaH5 exist?     
The existence or nonexistence of GaH(5) has been widely discussed [N. M. Mitzel, Angew. Chem. Int. Ed. 42, 3856 (2003)]. Seven possible structures for gallium pentahydride have been systematically investigated using ab initio electronic structure theory. Structures and vibrational frequencies have been determined employing self-consistent field, coupled cluster including all single and double excitations (CCSD), and CCSD with perturbative triples levels of theory, with at least three correlation-consistent polarized-valence-(cc-pVXZ and aug-cc-pVXZ) type basis sets. The X (1)A(') state for GaH(5) is predicted to be weakly bound complex 1 between gallane and molecular hydrogen, with C(s) symmetry. The dissociation energy corresponding to GaH(5)-->GaH(3)+H(2) is predicted to be D(e)=2.05 kcal mol(-1). The H-H stretching fundamental is predicted to be v=4060 cm(-1), compared to the tentatively assigned experimental feature of Wang and Andrews [J. Phys. Chem. A 107, 11371 (2003)] at 4087 cm(-1). A second C(s) structure 2 with nearly equal energy is predicted to be a transition state, corresponding to a 90 degrees rotation of the H(2) bond. Thus the rotation of the hydrogen molecule is essentially free. However, hydrogen scrambling through the C(2v) structure 3 seems unlikely, as the activation barrier for scrambling is at least 30 kcal mol(-1) higher in energy than that for the dissociation of GaH(5) to GaH(3) and H(2). Two additional structures consisting of GaH(3) with a dihydrogen bond perpendicular to gallane (C(3v) structure 4) and an in-plane dihydrogen bond [C(s)(III) structure 5] were also examined. A C(3v) symmetry second-order saddle point has nearly the same energy as the GaH(3)+H(2) dissociation limit, while the C(s)(III) structure 5 is a transition structure to the C(3v) structure. The C(4v) structure 6 and the D(3h) structure 7 are much higher in energy than GaH(3)+H(2) by 88 and 103 kcal mol(-1), respectively.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号